Classification

A monomial is a real number, a variable or a product of a real number and one or more variables. Here are some examples of monomials.
16
y
$-3 x^{4}$
$2.5 x^{2} z^{5}$

The degree of a monomial is the sum of all exponents of its variables. The degree of a nonzero constant (a real number) is zero.

Problem 1: What is the degree of each monomial?
A) $5 x$
Degree: 1
$5 x=5 x^{1}$. The exponent is 1.
B) $7 x^{5} y^{3}$
Degree: 8
The exponents are 5 and 3 . Their sum is 8 .
C) 2
Degree: 0
$2=2 x^{0}$. The degree of a nonzero constant is 0 .

You can add or subtract monomials by combining like terms.
Problem 2: What is the sum or difference?
A) $2 x^{2}+4 x^{2}=6 x^{2}$
B) $5 x^{3} y-x^{3} y=4 x^{3} y$

Now, we can use monomials to form larger expressions called polynomials. A polynomial is a monomial or sum of monomials. The following polynomial is the sum of the monomials $x^{4},-3 x^{2},-4 x$, and 1 .

The polynomial above is in standard form. Standard form of a polynomial means that the degrees of its monomial terms are ordered from greatest to least. The degree of a polynomial in one variable is the same as the highest degree of a monomial.

The degree of $x^{4}-3 x^{2}-4 x+1$ is 4 .
The table below shows how to name a polynomial based on its degree or the number of monomials it contains.

Polynomial	Degree	Name Using Degree	Number of Terms	Name Using Number of Terms
6	0	Constant	1	Monomial
$5 x+9$	1	Linear	2	Binomial
$4 x^{2}+7 x+3$	2	Quadratic	3	Trinomial
$2 x^{3}$	3	Cubic	1	Monomial
$8 x^{4}-2 x^{3}+3 x$	4	Fourth degree	3	Trinomial

